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A self-consistent nonlinear model of an isotope separation process based on se-
lective ion cyclotron resonance heating in a magnetized plasma is presented, and
its numerical resolution is described. The response of the electrons to the electro-
magnetic field is modeled by a cold and linear conductivity tensor, while a particle
method is used to solve nonlinear Vlasov equations for the ions. The resolution of
the time-harmonic Maxwell equations is achieved by a finite-element method. Both
steps are coupled by an iterative procedure, which shows fast convergence. Results
are presented for the case of a solenoidal launching anten®aoo1 Academic Press

Key Wordsion cyclotron resonance heating; isotope separation; Vlasov—Maxwell
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1. INTRODUCTION

The ion cyclotron resonance (ICR) phenomena allows to give energy to species i
magnetized plasma. Such effects have been commonly used for a long time, for examp
fusion devices [1] as well as in isotope separation [2, 3]. In this last case, one chosen spe
has to be heated selectively by the electric field created by an inductive antenna. A schen
description of a device used for isotope separation is given by Fig. 1. A strongly magneti.
plasma is first created in the source zone by collisions of the atoms of a metallic vapor
electrons heated at the electron cyclotron frequency. lons and electrons leave the sc
and enter the zone we want to modelize in this paper, where ions are heated select
by cyclotron resonance. Then, sufficiently heated ions, which have large Larmor radii,
the enriched plates in the collection zone, while nonresonating ions hit the terminal we
plate. The efficiency of this process requires that ion—ion collisions are rare, so that selec
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FIG. 1. Schematic view of an isotope separation device.

heating is not spoiled by collisional transfer of energy between resonant and nonreso
species. Therefore, collisions are usually neglected in the modelization. More comp
descriptions of such devices can be found in [2, 3].

The simulation of ICR heating remains a difficult problem as the nonlinear Maxwel
Vlasov system of equations has to be solved for this magnetized noncollisional plas
As the unsteady phase is usually of reduced interest for isotope separation devices, 1
periodic solutions of these equations are generally considered.

Following the ideas of McVey [4], a semi-analytical derivation was developed by Compz
La Fontaine and Pashkovsky [5]. They resolved the Maxwell equations in the time-harmc
representation and in cylindrical coordinatesd( z), wherez is the axis of the confining
magnetic field. The solutions for the electromagnetic (EM) fi@ldR) are found in terms
of Fourier series, both in the azimuthal modand in the axial wavenumbgy. The current
density generated by the plasma species is set equdlto, k) E(w, n, k), whereo is
the frequency of the exciting current density carried by the launching antenna, and wt
o is a conductivity tensor obtained by the integration over velocities of the solutions
the Laplace—Fourier transformed Vlasov equations, linearized around spatially infinite
homogeneous time-averaged zeroth-order distribution functions. Its expression, calcul
for a homogeneous magnetic fiddg is given for example by Ginzburg and Ruhadze [6].
Moreover, a greatly simplified formulation of this tensor is used in [5] by sekting « 1,
wherek, is the transverse wavenumber amdthe mean transverse Larmor radius of the
species.

This method has the major defect of being linear in the field amplitude, neglecting 1
quasilinear retroaction of the wave on the ion zeroth-order distribution functions. Itis a
inconsistent with the plasma flow: In actual experiments, the temperature of the hes
species may vary from around 5 eV at the entrance to about 500 eV at the end of
device, which contradicts the assumed axial homogeneity. Thus, it can be applied main
heating in the linear range, mostly for minor species. Moreover, finite axial length effe
are ignored, though it can be shown [7, 8] that this may have consequences on the La
and cyclotron damping rates as compared to those of an infinite plasma. Furthermore,
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method needs a Fourier transform of the exciting current density, which often leads to q
tedious computations as usually the antenna shape is complicated (helicoidal filaments
terminal rings and current leads). Details about this method, as well as comparisons \
the experiments can be found in [4, 5, 9].

Because of these restrictive hypotheses, it was decided to develop a self-consisten
merical solution of the Maxwell-Vlasov system in configuration space rather than in t
Fourier space, assuming that a time-periodic regime has been reached. A quasilinear n
is derived, which retains only the coupling introduced by the harmonitsO, and 1
of the fields and of the ion distribution functions, while the contribution of the electror
is assumed to be cold and linear. Moreover, neutrality of the time-averaged quantitie
assumed.

In order to solve the coupled system of equations, we developed an iterative fixed-p
method. In the first step, the Maxwell equations are solved in time-harmonic form by
finite element method with sources computed at the previous iteration. Then, the Vla
equations for the ions are solved by a particle method with the newly computed EM we
field. The procedure is iterated until a fixed point is reached. Fast convergence is obta
by approximately impliciting the ionic current with the help of an equivalent, linear, an
local conductivity tensor.

This paper is organized as follows. In Section 2, we first derive and justify the physic
model we use, and give the corresponding governing equations. Then, in Section 3,
iterative method employed to find a solution of the model is detailed, and the underlyi
numerical methods are described. In Section 4, we presentand discuss results obtained
method, including resonance curves, field, and mean Larmor radius radial and longitud
profiles for a solenoidal launching antenna. In Section 5, conclusions are drawn and
results are summarized.

2. MODELIZATION

2.1. General Assumptions

As mentioned earlier, we intend to solve the Maxwell-Vlasov system

8fot o
e VoV + FE+V xB) W f, =0, (1)
ot m,,
IK. 1) = an/3 06, V, VAV, 2
ace R
19E
2ot V x B = —uo(d + Jexp), (3
B
aa—t+vX E=0 4)

in a time-periodic representation and inside a bounded domain which represents the he:
region. This domain is supposed to be a cylinder whose end sections are locatedin
andz = L. The confining magnetic field is directed along thaxis, and we shall denote
by (ex. ey, &) the orthonormal basis ats.

In these equations, the subscriptefers to any element (electrons or ions) in thesset
of the plasma species, ang, m,, and f, are the charge, mass, and particle distributior
function, respectively, of the speciesvhose cyclotron frequency is given by, = %‘Z’O'.
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Because the curredty; carried by the inductive antenna is purely harmonic,
Jext() = Jox 1€ + Jex 167, (5)
the solution is searched under the form
A = Ao+ A€ + Are !, ®)

whereA denotes eitheE, B or f,. This means that only the harmonieg, 0,and 1 (i.e., the
time-independent solution and the fundamental harmonics) are taken into account. Ind
in ICR isotope separation experiments, the EM force created by the Eg|d3; acting

on the patrticles is small as compared to that created by the stationarBfield other
words,|B1| ~ A|Bg| and|E1| ~ A|V¢||Bol|, wherea is much smaller than 1, and whéevg

is a characteristic velocity of the plasma species, the thermal velocity for example. Wi
developing the solution of the Vlasov equation (1) in ascending poweks ibfcan be
shown that the total contribution of higher-order terfpg, with | p| > 2 of the distribution
function f, is of orderx?. Consequently, because of the linearity of Egs. (3) andggand

Bp with |p| > 2 are also of order up to?. This fact is well confirmed by the experimental
results, as no higher harmonics are observed.

Further, the static electric field is assumed negligible+4 0), because of the great axial
mobility of electrons: When positive charges are in excess in a section of the plas
because of ICR heating or of other plasma phenomena, then the electrons locate
the same magnetic field lines, but in other sections of the plasma, are able to neutr:
quite easily this space-charge [4]. This assumption is used in most of the works r
tive to ICR isotope separation [4, 5] and is also fairly well-checked in practice. Mor
over, we shall consider that the highly confined plasma is fgveo that the value of
the externally applied magnetic fieBh is considered to be known and is not disturbec
by the time-averaged current densities generated by the particles. Although the me
presented here does not need any restriction on the homogeneity of the static mag
field, we will assume it homogeneous throughout the whole heating region for the sake
simplicity.

2.2. Modelization of the Electrons

The response of the electrons under the action of the EM field is assumed linear bec
the typical transit time of an electron crossing the heating zone with thermal velocity is of
order of some microseconds, so that the interaction time with the wave is a very few peri
(comparedto 500 to 1000 for the ions). Moreover, electron cyclotron absorption is negligi
asw < wee. Electron Landau damping has also been neglected asdbmponent ok,
is usually very weak because of the high electronic axial conductivity. Finally, the me
electron Larmor radiuso( e ~ 5 um) is much smaller than the gradient scale length of th
EM field (k. pLe <« 1), and the phase velocity of the wave is usually large in front of th
electron mean axial velocitye (we < kﬂu).

With these assumptions, we end up with a cold electron conductivity tensor relating
first harmonic of the electronic current density; andE; in the following way [10]

Je,l = Ng, oXeE1, (7)
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whereng o is the time-averaged electronic density, a@ds given by

) —iae  be 0
q .
Xe = — —be —iae 0 , (8)
Me .
0 0 —ire
with the definitions
1 1
aezé(se‘i‘de)» bezé(se_de)» (9)
1 1 1
% = 9 de == ) re = - (10)
w + wce w — Wce 0]

Consistently with the hypothesis made in Section 2.1 on the nullity of the static elect
field, the plasma is assumed neutral so that

Neo = Z Ni.o, (11)
ieZ
whereZ denotes the set of the isotopic ion species@ndhe time-averaged density of the
ion species € 7.

2.3. Modelization of the lons

As the efficiency of the isotope separation device under consideration relies mainly
the dynamics of the different ion species, we retain the full Vlasov equation (1) for the
species, where the fields and B are now under the form (6). The only restriction we
make is that the solution of (1) is supposed to be time-periodic. The existence of suc
solution was proved by Bostan and Poupaud [11] and by Omnes [12]. Note that, on
other hand, the existence of a periodic solution to the whole Vlasov—Maxwell system
a three-dimensional bounded domain has not been proved yet. We shall also suppose
the incoming ion distribution functions are known and time-independent on the injecti
boundary located iz = 0 and that no particle is reflected from the end boundary of th
device located iz = L

fo(X,V, 1) = T, 8(X,V) forz=0andV, > 0, (12)
f.(X,V,t) =0 forz=L andV, <0, (13)

wheref, (X, V) is a given, not necessarily Maxwellian, distribution function. In particular
the X-dependence of, g allows to model radially nonhomogeneous plasmas.

2.4. Summary of the Model

Using the previous considerations, the full system to be solved is: For giyanand
distribution functionsf, g of the ions on the boundaries, firfd, % periodic witha € 7
andEj, B; such that

of,

o TV Wxfat :]_a[(Eleiwt +E1e7' +V x (Bo + B1€“! + Bre )] - Wy f, = 0,

(14)
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w2 . .
VxVxE;— (? I3 — pol wne,OXe) E1 = —polwext1 + Ji,1), (15)

ia)Bl =-V x El, (16)

wherel; is the identity matrix ofR3)?, Ji 1 is the fundamental harmonic of the ion current
density,

21

o 3 ﬂ B —iwt
J1=> G /Rsva vzﬂ/O e 't f, (1) dt, (17)
ael
and where, according to Eq. (11} is set equal to
» 2
= dBv— [ 1) dt. 18
Neo E;R Zﬂ/o ® (18)

Boundary conditions for the EM fields will be discussed later on.

Note that we have combined Egs. (3) and (4) to get Eq. (15), which is more conveni
for the numerical approximation considered in Section 3.2. Moreover, Eq. (14) allows
a quasilinear description of the behavior of the ions, which self-consistently models
heating of these species

iwfy1+V-Vxfe1+ r?Ta(V x Bg) - Vv fy1= —:Ta(El +V xB1) - VWio (19)

o o

V-V foo+ E(V x Bg) - Wy fuo = —2-E

o o MelEr+V x By Wy foal. (20)

3. NUMERICAL SOLUTION OF THE MODEL

As is well-known in plasma physics, the dielectric conductivity tensor (i.e., the relati
linking Ji 1, given by Eq. (17), to the field,) is essentially nonlocal, and the discretization of
awave equation with such atensor would then lead to a full mass-matrix, which is prohibit
both in computational time and memory storage requirements. This is the reason why
outlined by Van Eester [13], the numerical methods usually developed until now consi
mainly nonlocality in only one space dimension, normally to the static magneticield
The idea proposed in the present article is to compute an “equivalent” conductivity ten
(to be defined in the next subsection), linear and local, and to use a fixed-point itera
method to get the solution of system (14) to (18).

3.1. Description of the Numerical Method

We first describe the iterative method used to compute a solution of the proposed mc
Knowing the values of the fields and of the distribution functigfsBX and f< witha € 7
after thek™ iteration, the steps for thg + 1) iteration are the following

e First, computel¥, (X) andnk ,(X) respectively by formula (17) and (18).
¢ In each point of the domain, compute an “equivalent,” linear and local ionic condu
tivity tensoroik“(x), usingJi‘fl(x) andEX(X) according to the relation

IEL(X) = o THX) EXX). (1)



332 OMNES AND LOUVET

Here, we must point out that there is a large choice of such tensors, because there are
coefficients in the 3 3 matrix oik“(X) and only three equations in formula (21). The
fact that thevy,, oy,, 025, ando,y elements of the conductivity tensor are dominated by th
remaining coefficients when the plasma is not too hot, leads us to choose the particular f

_iak+1 bk+l 0
offt=| —p+t —iat 0 |, (22)
0 0 —irk

where the three unknowr&*t, b1, andr*+! are now fully determined by formula (21).
e Calculate the electronic conductivity tensor

o THX) = Nn§o(X) xe- (23)

e Solve the wave equation with the new tensors
k+1 w? ; k+1 k+1 k+1 ;
V xV xEftt - (g'g — ,u,ola)(ae+ + o7t )) Eit = — ol @Jexts (24)

Atthis level, it must be noticed thaf"*E™ represents an implicit prediction 8f}* and
aek“ a prediction of the converged valuemfo(X) xe.

e Solve Eq. (16) foBX+2.
e Solve Eq. (14) forf *** with the newly computed field€f+?, Bk,

If this procedure converges to a limit, then it is easy to check that this limit is a solution
the initial system (14) to (18). Moreover, if there is a unique solution to this system (whi
remains an open question), then the choice of the form of Eq. (21) does not influence
the final result, but only the speed of convergence. If this tensor is badly chosen, there m
even be no convergence at all. Although no theoretical tool has been developed to optir
the choice of such a tensor and to study under which conditions this procedure converge
seems very natural to use a tensor that is as close as possible to the “true” physical rel:
linking J; 1 to the fieldE;. For the kind of devices we are concerned with, in which the
plasma is not very hot (see the parameters given in Section 4.1), an efficient choice
achieving convergence is thus given by the particular form Eq. (22), as can be seen f
the convergence criteria defined by Egs. (88) and (89) and plotted on Figs. 2 and 3.

Reration Number

1e-00

16+00
1e-01 @ 1e-01 ()
s =)
2 1e02 2 1e-02
& 8
£ 2
g 1003} ] £ Te03¢
3 S
g 1e04; \ g 1e04 .
N 8
g 1605 L . © 1e-05f ~
5 . @ .
Z N £ 106 |
8 1e-06 - . 8
1607 "‘\\\ 1607 | ~— ]
™~ 1e-08 T
2 3 2 3 4

Reration Number

FIG. 2. Value of the convergence criteria Dfa) and D (b) as a function of the iteration number k for

w = 0.95’1)61.



1e+00

SIMULATION OF ISOTOPE SEPARATION

333

1e+00

N\ @ — ®
& 1e-01 \ 1 o te0tf p
§ £
5 fe-02} . & 1e-02
=
5 AN S
& te03f 8 te03l
g )
g ]
E 10-04 | g 1604 ¢
3 o
N
16-05 \\- 1605 | \\
1 2 3 4 1 2 3 4

Iteration Number Hteration Number

FIG. 3. Value of the convergence criteria Da) and I (b) as a function of the iteration number k for

W = We1-

The proposed numerical method relies on two main steps: The resolution of the w
equation (24) with given conductivity tensors, and the resolution of the Vlasov equati
(14) with given fields. These two points are the items of the next two subsections.

3.2. Solution of the Maxwell Equations

The resolution of the first step of the iterative method, i.e., the solution of the Maxw:
harmonic equation (24), is performed by a finite element method (Rirtgtrahedral el-
ements. They were chosen rather than edge elements [14] because the particle pu
method described in Section 3.3 requires the continuity of the EM fields. For a compl
review of the respective advantages of both finite element methods, we refer to [15]. Nun
ical experiments show th&' elements are appropriate in our case, as there is no singular
in the geometry of the computational domain and no discontinuity in the dielectric ten:
coefficients.

3.2.1. Variational Formulation. In the continuous case, Gauss’ law
2

V- (eE1) = iopmoV - Jexty With e = % I3 — ,uoia)(crek’L1 + (rikH) (25)

is a direct consequence of Eq. (24), but it has been shown bydiah§16] that neglecting
(25) in the computations may lead to the appearance of so-called spurious modes, and
possible cure to this problem in the context of a nodal finite element solution is to penal
(25) by including it in the variational formulation derived from Eq. (24) which reads:

Find E;, such that for alF
/Q(VXEl)-(VxE)dQ—/F((VxEl)xu)-Edr
—/Q(sEl).Edser/va.(eEl)mdsz
= _inO/QJextl FdQ +iouo / xV - Jex1V - (eF) dQ2, (26)

Q

wherev is the outgoing unit normal vector with respect to the boundargf the do-
main Q.
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In the vacuum part of the domain, the penalization parametsrchosen to be(f%, o)
that

xV - (eE1)V - (¢F) = V-E1V - Finthe vacuum (27)

For nondiagonal tensors of the form (22), the choicexfas less obvious. To be coherent

with the vacuum case, one can yse- > 1 where Detf) is the determinant of.
|Det(e)|3

3.2.2. Boundary conditions.The sef is composed of the lateral boundary of the cylin-
der (denoted by'c), on which perfectly conducting conditionsy x v = 0) are imposed,
and of its two ends perpendicular to the external magnetic field (commonly denofgd.by
The injection end is a metallic diaphragm, and the terminal end is a metallic collector. Th
a first option is to simulate the whole device and to apply perfectly conducting conditio
on I'a. But, in order to lower the computational costs, a second option is to restrict t
domain by using artificial vertical boundaries on which absorbing boundary conditions 1
the wave equation (24) are applied.

For constant scalar permittivityand permeability:, such artificial absorbing boundary
conditions are well-known [17]. They read

(VxE)xv:i\/%_M((Exv)xv), (28)

and are exact for tangential waves whose propagation vector is normal to the boundar
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Therefore, we look for a condition linking, and v x E;) x v for plane waves satis-
fying the homogeneous Eq. (24) and which are tangential and propagating normally to
boundary.

The following relation is obtained (see Ref. [12] for its derivation),

(Vx Ep) xv=1i((ve,E1) xv) x v, (29)

where the matrix/s, is the square root of whose eigenvalues have positive real parts. |
reads

(e38) —i(=3%) o
Vo= lifes) (=55) o | 0
0 0 Kp

wherekg, k. andkp are complex numbers such that

2

w
K2 = &~ @Ho@- b), fekg) > 0, (31)
) @ g
k¢ = —ono@+b), de(k) >0, (32)
2 w2 <Y
kp = 7 — onar, elke) =0, (33)
with the definitions
Ne00 Ne,0q° Ne.od”
q - Neod ae+a“t, b= e09 be + b1, = e,09 Fo- it (34)
Me Me Me

For symmetry reasons, and noting that for tangential fields
E; = —(E1 xv) xv, (35)

the insertion of (29) into the variational formulation (26) yields the problem:

Find E, with E; x v 1. = 0 such that for alF with F x v|r, =0

/(VxEl)‘(VxE)dQ—i—i \/5+((E1xv)xv)~((Exv)xv)dFA
Q

a

—/(eEl)-Edsz+/Xv-(sEl)v.(eF)dQ

Q Q

:—iwuo/Jeth~EdQ+ia)uo/ XV - Jext1V - (eF) dQ. (36)
Q Q

3.2.3. Solution of the Discretized Problemie first define2, as a suitable approxima-
tion of the domair2, Y as the set of all tetrahedra of a mesh covefing and asly, the
set of all vertices of the elements ©f,. We denote by'cy, (resp.I"an) the boundary of the
mesh approximatingc (resp.I'a) and by} °" the set of all triangles which are the traces
onFFCh of tetrahedra ofy,. Finally, IhFCh denotes the set of all vertices of the elements o
"
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In each nodg of Ihrc", we define the outward normal vector in the following way

> [K vk

| Kes)

V' = Z |Krch s (37)
Tch ; "
K, =" eS())

where|K, °"| designates the area of the triangl°", S(j) the set of all triangles ot} "
to which j belongs, andy is the outgoing normal unit vector <b<fhrc".
Then we define

Yo = {Fn € C°Qn)% YKn € Th, (Fr)ik, € Pu(Kn)*}, (38)

Yon = {Fn € Ya; Fa(Xj) x v) = 0,¥j e I}°"}, (39)
whereX; are the coordinates of the vertpx IhFC“. Moreover, we defingl as the orthogonal
projection fromY}, onto Yg,. The discrete problem is now:

Find E;, € Yo, such that for alF, € Yy,

(V x TIEp) - (V x TIF,) A2 + i Ve ((TIEp x v) x v) - ((TIF, x v) x v)dI an

Qp Tan

— (eT1Ep) - TTFL A2 + / xV - (eEn)V - (eIlIFy) dQp
Qp

Qp
= —iwuo/ Jn - IFRdQy + iwuo/ xV - InV - (eIlFy) dQy, (40)
Qnp Qn
wherel;, is a P! approximation ofley1.

Abasis ofY}, can be constructed by associating to each vértex, the vectorial function
of Yh

LX) R, LX) =¢ (X)ey, «c€ix:y;z), (41)

where we recall thate(, ey, &,) is the orthonormal basis @3, and wherep' (X) is the
scalar function which i$* on each tetrahedron afy,, continuous orf2,,, and such that

Vi, j) e 1Z ¢ (X)) =481, (42)

wheres'l is the Kronecker symbol.
EquippingY;, with the scalar product associated to the quadrature formula

' — [Knl =
/ A Bnd2nx 30 SN Y AnX)) - Ba(X)), (43)
n KneT jeT (Kn)
h€Th J€ h

whereT (Ky,) is the set of the four vertices of the tetrahedkyn the projectioril has the
following expression:

o ifiglhe,

ULVi H g T .
> ——”v.quS/'s ifiel,®
Be{x;y:z}

Mg), = (44)
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Let us write the unknown function as

En(X)= Y <ZE;¢}3(X)>, E} eC. (45)

Belx;y;2h \ jeln

Suppose further thak, is given under the form

W= Y (Z Jﬁ"¢g(X)>, Jec, (46)

Belx;y;zh \ jeln

and let us denote bi the vector of((Ccard('“))3 of general term(E),3 = Eﬂ, and byJ
the vector of general term])ﬂ = Jﬂ Then solving problem (40) amounts to finding the
solutionE (such thafi1E = E) of the following linear system

MAIE = 11DJ, (47)

wherell is the matrix associated to the projectibin A the matrix whose general term
(A ’5 is obtained by replacing, by ¢ﬂ andFy, by ¢! in the left-hand side of Eqg. (40), and
D the matrix whose general terrﬁ))aﬁ is obtained by replacingy, by ¢ﬁ andFy, by ¢!, in
the right-hand side of Eq. (40).

As we intend to inverse the linear system resulting from the variational formulation ir
large domain with fine meshes, it is worth using iterative methods rather than direct or
The QCGS method [18, 19] has been preferred to other classical methods, such as (
[20] and conjugate gradient [21], because it ensures the decreasing of the residue at
iteration and can be used with nonhermitian matrices. Like with most iterative methods
is stralghtforward to check that applying QCGS to (47) produces at each step anftera
which is such thaflE = E, thus addressing correctly the treatment of perfectly conductin
boundary conditions.

Test cases reported in [12] have been successfully performed in a cylindrical wavegt
filled with two dielectric media and with a solenoidal exciting current density, in order
make a simulation as close as possible to the one we shall finally consider in Section ¢
particular, the necessity of penalizing (25) in the variational formulation was demonstrat
as no convergence of the QCGS method was obtained without penalization.

3.3. Solution of the Vlasov Equation

Once the EM field is computed, the next step in the proposed iterative method is to f
a %” periodic solution of Eq. (14), subject to the boundary conditions (12) and (13).

3.3.1. Aperiodic solution. Let us suppose that a particle approximation of the incomin
flux on the injection boundary is known under the form

—V . v(X)fg(X,V,t) = ( Z gpd(X — Xp) ® 8(V — vp)> ® ZS(t — mAt).

pe[1,P] meN
(48)
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This means that at each time st€pparticles are introduced in the domain of computatior
in (Xp) perz, ) With velocities(V p) pe1, 1. The time step size is chosen to be

2
At =" with N e N*. (49)
wN

The determination of such an approximation will not be detailed here and can be achie
for example by using a so-called Quiet Start method. We refer to [22] for details on
item.

In order to construct a periodic solution of Eq. (14) subject to the boundary conditions (’
and (13), we consider the corresponding initial value problem (12)—(14)fwik, V, t =
0) = 0; V(X, V) € © x R3, and we shall show that its solution is periodic for all tintes
greater than some valUe* to be given below.

Let us introduce in a classical way the characteristic curves associated to the par
emitted inX , with velocity V , at timemAt

(Xxp.vp.mats Vxpvpmat) i R = @ x R

S (Xx,v,pmat(9), Vx,.v,mat(9), (50)
which are the solutions of the differential system

dXx,.v,.mat(S)
% = Vx,.v,mat(S)

dVx, v, mat(S) @
* == [E(Xxp,vp,mAt(S)a 5)

+Vx,.v,mat(s) x B(Xx,.v,mat(s), )] (51)
Xxp,vp,mAt(mAt) = xp
Vx,.v,mat(MAL) =V,

with E andB given by

E(X,t) = Ex(X)e' + Ex(X)e ', (52)
B(X,t) = Bo + B1(X)€*" + By (X)e*", (53)

consistently with Eq. (14).
Let us also define the “outgoing time” of a characteristic curve

7s(Xp, Vp, MAD) = inf {s = mAt, (Xx,.v,.mat(s), Vx,v,mat(s)) € FLUFo}  (54)
as the moment in which the curve intersects the bounBary Fq defined by

Fi ={(X,V) eI xR®, V-u(X)> 0}, (55)
Fo={(X,V) e xR3 V.p(X) =0}, (56)

where we recall thal" is the boundary of the domain, and whereX) is the outgoing
normal unit vector of” in point X.
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The solution of the initial value problem under consideration is given by

PGV =" > gp[Hmat® — Heoxvpmat ()]

meN pe[1,P]

X 8(X = Xx,vpmat(®) @ 8(V = Vx, v,mat(®)), (57)
where the Heavyside functidd, (s) is defined by

0 ifs<u

1 ifs>u’ (58)

Hu(s) = {

Let us now assume that all injected particles reach the “outgoing” boundary within a fin
time and let us define

T* = supzs(Xp, Vp, MAL) < +o00.
m € [0, N[ (59)
p e[l P]

Under this hypothesis, the solution (57) of the initial value proble%ij igeriodic, for times
greater tharT *,

*

T
VgeN,q> —

A TGV.@+N)AD = F(X. V. qAt). (60)

The proofs of (57) and (60) are not given here (they can be found in [12]), but one can ea
understand these properties. Equation (57) states that the delta functions are transp
along their characteristic curves.

The weight Hmat (t) — Hex,.v,.mat (D] is here to ensure that the contribution of the
particle injected inXp, Vo, mAt) is zero before it is injected (fdr < mAt) and vanishes
after it has gone out of the domain (for- 7s(X, V, MAL)).

Equation (60) simply states that a particle injecteddp,(V 5, (m+ N)At) follows the
same characteristic curve as that injecteddp,(V ,, mAt), and f is thus periodic as soon
as all the particles injected during the fiféttime steps are already out of the domain.

The values of; ; andn;  at the vertices of the tetrahedra are now needed to compute t
tensorsy; ando, defined by Egs. (21) and (23). For the sake of compatibility with the finit
element method described in Section 3.2, we uBé approximation of these quantities

NPTC SR NP Y109} (61)
Belx,y.,z} jeln

mo(X) ~ Y nl el (X), (62)
jeln

where gl and¢/§ are the basis functions defined in Section 3.2.3. Using the quadratt
formula (43), we have

/Ji,l(X)qag(X)dsm Mi3), , and / nio(X)¢! (X)dQ ~ Minl,,  (63)
Q Q



340 OMNES AND LOUVET

whereM ! is defined by
- |Knl
M! = E —_—.
4 (64)
KnCSuppig!)

Using formula (57), definitions (17) and (18) and denoting @y the integer part of
W, we obtain after some algebra

pe[1,P] 1=0 k=I
x @D (X v at((K+ DAD), (65)
q N-1 Qs
Minlo= 3 37 g5 373 ) (X vy ac((k+ DAD). (66)
pelP 1=0 k=I

These formulae have the crucial implication that it is enough to follow the discrete traje
tories of theP x N particles injected during the first period of the EM field. This numbe
of particles does not depend @ri which can be quite large for long devices. Note that for
fixed (p, I, k), the value ofp/ (Xx,.v,.1at((K+ 1) At)) is nonzero only for four vertices,
namely the summits of the tetrahedron in which the particle injected jn\( , | At) is
present at timel(+ 1) At. The determination of such a tetrahedron and the computation
@/ (Xx,.v,.1at((K+ 1) At)) are performed using the particle tracking method presented
[23]. In the context of ICR heating, the determination of the particle trajectories must b
subject of special care and is described in the next subsection.

3.3.2. Particle pushing. The periodic Larmor motion of the ions around their guiding
centers needs to be described accurately because the heating mechanism of & $pecie
based on the resonance betwesandw, . The usual particle pusher of Boris, as describec
in [22], discretizes the circular uniform motion by a polygon whose perimeter is shorter th
that of the circle it approximates, resulting in a slight modification of the effective cyclotrc
frequency of the particles. As this modification is roughly of the order of the isotope sh
between the different isotopic species for usual discretizations (around 1.3% for a polyt
with 16 sides), it is absolutely necessary to use a well-adapted particle pusher

The general idea is the following: Knowing at tirtle 2, the veIomtyV”*é and at time
t" the positionX" of an ion and the values of the EM field KI', we shall integrate the
equation

?j_\t/ - %(E(x“,t) V() x BX" 1), V(") = Vb, 67)

as exactly as possible on the intervﬁ‘l‘[%, t”+%]. In this formula,E andB are given by
(52) and (53).

After computing the approximatio\d”*é of the velocity at timet™ 2 the position is
updated through the classical scheme

XML = X" 4 AtV (68)
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Keeping in mind that the combined effectstf andBy are the very basis of the cyclotron
heating mechanism, we choose to decouple their action of tha{ @fich is orders of
magnitude weaker thaBy. We thus take into account the following:

1. Half a rotation resulting frorB;

dv(l) _ ﬂ (0] ny ol wNAt B\ M a—ionAt
= —[V® x By (XME™ + B (XMe™ "]
dt m 1 (69)
with V& (©0) = V"2,
2. Then, the effect resulting frof; andBg
dv®@ - — -
S = L [EXME 4 Ei(Xe V() x B
m N (70)
with V@ (1"-3) = wh(2>,

3. The second half-rotation resulting frdBa

dav® g . _ .
dt . [V(3) X (Bl(xn)em)nAt + Bl(xn)e—lu)nAt)}
K 1 (71)
with V@ (0) = V@ (t"*2),

The final approximation will be computed as

At
VtE = v<3>( 5 ) (72)

The steps (69) and (71) do not need a special treatment. Thus, we use the classical |
pusher whose precision is second order in time, according to the formula
v (%) —V(j)(O) q (V(J) (%) —I—V(j)(O))
At m 2
2

X (Bl(xn)eia)nAt + E(xn)e—iwnAt)’
(73)

for j =1or3.

Practical details to implement this pusher can be found in [22]. On the other hand, Eq. (
is solved in an exact way. It is first useful to spiit? = (u?, v@, w®) andE; in their
parallel and perpendicular components relatively to the magnetic field, i.e., to theegctol

The equation fow®@ is now,

dw®
dt

= BN + B (XTe ) (74)
whose solution is given by

w(Z)(thr%) (2)(tn77)+2_?n sin ( > )[Elz(x )elwnAt+Elz(X )eflwnAt] (75)
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By setting,
Vi =u? +iv®, (76)
and
E} = Ex(X") +iEy (X", ET = En(X") +iEgy(X"), (77)

we obtain the following equation for |

dv, . q
- = V -
dt @eVLt

As usual, when studying particle motion in the context of ICR, it is hecessary to consi
two cases

1. Nonresonant cases{ # ?), for which there holds

(ETet + Efe ). (78)

VT% — V'f%e—iwcm
9 |gnde(ms)ar (L—e %) &n —io(+3) At (1—eleemat)
— |E" e )atl = ) L Ene pacll—€ ™ TT) 29
T (wetw) L (@0e—w) (79)

2. We then only consider the resonant case w., as the other possibility = —w.
can be treated in a similar way. The exact solution of (78) is given by

(1 _ efi (chrw)At)
i (we + w)

n+3 n

-3 —iwe q i 1
VL :VL 2g7i At_i_E Erlel (n+3)At

+ Eie‘i‘”(’”%)AtAt] . (80)

4. RESULTS

The aim of this section is twofold. First, we test on a rather simple case the conv
gence of the iterative method proposed to solve the global coupled problem as describe
Section 3.1. Second, we check qualitatively that the numerical results meet expected pt
cal characteristics. Detailed analysis of the physics as well as comparisons with experim
are not the matter of this paper and will be reported elsewhere.

4.1. Simulation Parameters

We are interested in the simulation of a Potassium plasma composed of two isotc
species?!K, further denoted as “species 1” aftK, further denoted as “species 2.” All
relevant physical parameters will be subscripted eithey biyby , whether they refer to
species 1 or 2, respectively.

The computational domain is a cylinder of length 50 cm and of radius 15 cm, whi
represents the heating region of a fictitious separation device. For information, the len
of actual devices, as described for example in [3] and [24] may vary from 0.5 m to 2 m.

On the injection section of this cylinder (locatedzrr 0) the distribution functions of
the two ion species are given by

p A~ .
fo.8(X, Y, U, v, w) (1_ S_g) Nody o8 (v, v) FR<Rp
a,B , Y, U, U, =

0 if R> Ry,

(81)
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where we set
RE=x24+y? v =u’+v? v =w. (82)
The functiong, g is supposed to be Maxwellian

1 — )2 2
S 2

P 2
Qu.8(v1, v = 33 e Vha VThe (83)
e VTh,O(

andng designates the total ion density at the center of the plasma coluima,real number
determined by the experimental conditiof, is the radius of the plasma column at the
entrance of the heating zore, represents the proportion of speciem the plasmaw,, is
the mean axial velocity, and, , the thermal velocity computed from the temperatiye
by the following formula

2K T,
VTh,Dt = . (84)

o

For the simulation presented here, we choose the following parameters

no = 5.10'°particles.m®, p=15 R,=6cm (85)
a; =0069 a=0931 T, =T,=0.2eV, u_)l = 152 = 3000 ms‘l. (86)

The magnetic field strengtBy| is chosen to be 0.3 T. The antenna which carries the electr
current is a simple solenoidal sheet

0

Jextl(Rv 0,2)=1]3 | S§(R—- Ra)lze[zm;zm], (87)
0

wheres is the Dirac distribution located iR = R; = 8.5 cm. Moreover, the antenna extends
axially fromz, = 0.1 mtozy = 0.4 m and carries a curredy = 900 A.nT 2,

Under these conditions, the value of the ion—ion collision frequency at the cen
(R =0) of the plasma column and at the entrance of the heating zone is found to
around 610* s~1. Note that this value decreases both radially, because of the density pro
as given by Eq. (81), and axially, in a strong way, as heating raises the temperature sp
(see Figs. 5 and 6). Thus, the simulation presented here reaches the limit of applicabilit
the noncollisional assumption for those particles which are at the center of the column: v
the mean axial velocity indicated above, such particles will, in the mean, experience a
collisions during their transit in the heating zone. However, this may hardly affect the rest
presented here because the accelerating electric field is anyway zero on the axis, as c
seen from Fig. 7. Inclusion of an ion—ion collision operator would be required to study t
effect of the noncollisional hypothesis on the numerical results, but is out of the scope of
article.

The computational domain is covered by two meshes (a coarse one and a finer c
They are further denoted byl; (respectivelyM,) and are composed of 5607 (resp. 38581
nodes and 30240 (resp. 218880) tetrahedra. The axial length of 0.5 m is discretizec
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FIG.5. Longitudinal profile of the fieldE, | (a) and of the mean Larmor radius of isotop¥é and“'K (b)

inR=2cmforw = wy.

21 (resp. 41) nodes and there are 267 (resp. 941) nodes in a section of the mesh. More
the wave period is divided into 16 (resp. 32) time steps for simulationgl p(resp.M,)

and 1664 (resp. 13312) particles of each of the two species are injected at each time
which corresponds to 8 (resp. 16) particles per triangle belonging to the trace of the m
on the injection section of the cylinder.

4.2. Numerical Results

In order to evaluate the convergence of the iterative method proposed in Section 3.1
define two criteria 9 and D which measure the relative difference between the electri
fields obtained at iteratiolsandk — 1 in the whole domain and in the part of the domain
filled with plasma, respectively. More precisely; we define

Field strength (V/m)

O = WA O DD

Dpf =

> MIf|(ED) - (E)*°

jelp
= MillE)*

ic|P
jely

(88)

r@

. 1 ®
\ 1 ar}

45

37+
337
29+
25
24

NRH

R 1.3 ey

’,/
Mean Larmor radius (mm)

0 005 0.1 0.15 0.2 0.25 0.3 035 04 045 05
Longitudinal abscissa (m)

¢ 005 0.1 015 0.2 0.25 0.3 0.35 04 045 05
Longitudinal abscissa {m)

FIG.6. Longitudinal profile of the fieldE, | (a) and of the mean Larmor radius of isotop¥¢ and 'K (b)

inR=5cmforow = wy.
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and

= M (Ep)" ~ (BRI

k il . (89)
j; Mi||(E})

k £
I

where(Erﬂ)k is the value of the field fEat nodej and at iteratiork, and wherd,” is the
subset ofl;, composed of the nodes that are located in the plasma reBien Rp).

The quantities Dand ¥ are presented on Figs. 2 and 3 k= 0.95 w1 andw = wer,
respectively, and for simulations performed on mé&sh Fast convergence is observed
with @ = 0.95w¢1, When the cyclotron heating is rather low. On the other hand, the fir
iteration forow = w¢1, when the heating of species 1 is maximum, computes only a cru
approximation of the converged value of the electric field and a supplementary iterat
seems to be necessary to reach the same criteria asdn=+h@ 95w, case.

Further, we give in Table | the CPU time needed to compute a solution of the Maxw
equations (“M step”) and of the two ion Vlasov equations (“V step”) on both meshes
a CRAY T3D vector computer. Obviously, computations on the coarser mesh are ra
cheap and enable parametric studies of the separation process by varying parameters
as wave frequency, confining magnetic field strength, plasma density. We also note
further efforts (e.g., parallelization) should be made to lower the CPU time needed
particle treatment, as this is the most expensive part of the computation. When w
defined parameters have been chosen after a parametric study on the coarser me
more detailed computation can be made within some hours of CPU time on the fi
mesh.

TABLE |
CPU Time Needed for the Two Steps of the Iterative
Method on MeshM; and M,

Mesh Step M Step V
M; 2.75s 105 s
M, 29.2s 3718 s
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4.3. Analysis of the Results

Simulations were performed dn; for w € [0.95wc1, 1.10w¢] with increments of 1wy
in w. In order to evaluate the efficiency of the selective heating, the mean Larmor radius of
two ion species in the section of the cylinder located #1 0.45 mandfolR = 0, R=2cm
andR = 5 cm was computed as a function of the frequency of the exciting current dens
Figure 4 shows that the most efficient pulsation for the heating of species 1 (resp. spe
2) isw = we (resp.w = w¢): This indicates the absence of Doppler shift for this type of
antenna, a fact which was pointed out in [2].

The longitudinal profiles of the resonant transversal electric fiald defined by for-
mula (77) and of the mean Larmor radius of species 1 and 2 are presented on Fif
for R=2 cm and 6 forR =5 cm. Recalling that the exciting antenna is located be
tweenz =10 cm andz = 40 cm, we observe a good transversal homogeneity of tt
electric field in the region 15 cre z < 35 cm, and the mean Larmor radius of the res-
onant species grows rather linearly in this region. On the other hand, after an ini
growth, the mean Larmor radius of the nonresonant species starts to decrease at the
of the column. But as the field is lower in that region, this decrease is weak. In
der to get a better selectivity of the method, the heating region should be chosen |
enough so that the nonresonant species has lost a maximum of energy at the end ¢
column.

Finally, Fig. 7 shows that the radial profile &, in the sectionz = 25 cm is linear
with respect to the radial position. This fact was observed with that type of antenna in |
Moreover, as a consequence, the mean Larmor radius of the ions species also varies
linearly.

5. SUMMARY AND CONCLUSIONS

In this paper, a self-consistent nonlinear model for the ICR isotope separation proc
was presented for the first time. While the interaction between the electromagnetic fi
and the ion species is described by the coupling of the time harmonic Maxwell equati
and quasilinear Vlasov equations, electrons are assumed to be cold. Further, we introd
a fixed-point iterative method to self-consistently solve this nonlinear set of equations.
Maxwell equations are solved by a finite element method, and the ion Vlasov equati
are solved by a particle method specially adapted to the ICR phenomenon. The ana
of a simulation in a simple configuration indicates that this iterative method shows f:
convergence and that parametric studies of an actual separation device are reachab
reasonable memory and CPU time costs. Moreover, the presented numerical results |
expected physical features, which justifies our confidence in this method.
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